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SUMMARY 

A method of plasma acceleration is explored which makes use of the 
radiation pressure of microwaves intensified in a resonant cavity as the 
driving pressure. When used to accelerate the plasma, the radiation can 
be compared to a gas which, however, is almost free of inertia and can 
expand with a velocity approaching the velocity of light. 

With the assumption of a power input of lo8 watts into a cavity, 
an input which lies in the range of possibilities because of the recent 
development of modern microwave generators, forces on the order of 
1,000 newtons seem to be attainable for highly conducting thin plasma 
disks or rings. For such plasmas, velocities up to 106 m/set and more 
are calculated. Although the energies that can be stored in the cavity 
do not yet quite measure up to acceleration systems where the energy is 
stored in condenser banks, the efficiency of interaction of the radia- 
tion with the plasma could be better than that of other systems, with 
the result that higher velocities may be obtainable for plasmas of small 
mass. Such plasmas may be useful for the study of certain aspects of 
thermonuclear fusion and propulsion. 

INTRODUCTION 

Within recent years great effort has been put into devising methods 
for electromagnetic acceleration of plasma for purposes of propulsion 
or thermonuclear fusion; in the latter case, the high kinetic energy is 
used as an intermediate step for the production of high temperatures 
through subsequent rapid deceleration of the plasma. 

In this paper a method is explored for making use of the radiation 
pressure of guided microwaves for applying forces.for acceleration of 
plasma. The success of such a method depends on the recent development 
of microwave generators of extreme power outputs which in the near future 
should reach 100 megawatts. The radiation pressures attainable with- 
such high powers are further increased by storing the radiation by reso- 
nance in a finite volume, or cavity, which is bounded on one side by the 



2 

plasma. The input frequency of the standing wave in the resonant cavity 
is appropriately changed when the plasma moves, with the result that 
cavity dimensions are changed. Such changes in frequency are possible 
for modern microwave generators. When used to accelerate the plasma, 
the radiation can be compared to a gas which, however, is almost free 
of inertia and can expand with a velocity approaching the velocity of 
light. 

A comparison of the present method with other systems for plasma 
acceleration and thermonuclear fusion would require much more detailed 
theoretical work combined with experimental studies. A few aspects are 
mentioned, however, which look promising. For example, in the rail type 
of accelerator, where the current passes from the walls through the 
plasma, the problem of contamination of the plasma with wall material 
arises sooner or later though ingenious ways have been devised to keep 
it small (ref. 1). 

In the present method, the energy can be more or less focused in 
certain regions inside the waveguide so that this problem may be avoided. 
When a plasma is accelerated by the induction effects due to a moving 
magnetic field, produced either by motion of a wave in a delay line 
(ref. 2) or by a series of coils pulsed in sequence (ref. 3), the problem 
arises that the magnetic field runs over the plasma and tries to hook on 
to it in the manner of a synchronous or an asynchronous motor. In the 
present method the wave energy is confined behind the plasma and exerts 
a push. 

Furthermore, high-frequency waves intersecting with a plasma will 
penetrate only a small amount (skin effect) provided the frequencies are 
not excessively high and the electron concentration of the ionized plasma 
is not too low. As a result, a good interaction of the waves with the 
plasma is accomplished even when the plasmas are made very thin and, thus, 
are of small mass. Because of the high repetition rate of pulses from a 
microwave generator, an almost continuous expulsion of plasma may be 
possible. 

Methods for confinement of plasmas for thermonuclear fusion with 
radio-frequency oscillations were also considered, where the plasma is 
at the center or the axis of a cavity, but it was found that these methods 
had been developed in references 4 and 5 and in others. In such methods 
the losses due to skin effects at the wall are a drawback. The trend is 
thus to use oscillations for auxiliary confinement and dynamic stabiliza- 
tion in certain critical regions, with steady confinement doing the major 
task. (For example, see ref. 6.) The present method differs considerably 
in that the radiation pressure is used to perform work in short-time 
acceleration of the plasma. The skin-effect heating is thus beneficial 
to the accelerated plasma because it keeps it ionized and the losses at 
the metal end of the cavity are reduced because of the short time of 
acceleration. The losses in the sidewalls of the cavity can be kept very 
low. Approaches are also possible where both end walls of the cavity are 
made of plasma, thus keeping the losses to a minimum. 
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SYMBOLS 

A cross-sectional area 

A',B',C' constants 

B 

Crefl 

h 

i=/T 

k 

2 

9 

“=E 

RM 

magnetic flux density 

reflection coefficient 

velocity of light 

diameter 

electric field 

force, newtons 

input frequency, cycles/set 

guide ,constant, vg c I 

height of two-dimensional waveguide 

absorption coefficient 

number of half-period variations of radial electric field 

mass, kg 

index of refraction 

power, w 

dimensionless quality factor of cavity, 
231 x (Stored energy) cow =- 

Energy lost per cycle of oscillation Ploss 

unit charge 

magnetic Reynolds number 
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53 

W 

X 

x0 

6 

EO 

51 

8 

A 

h 

P 

V 

(5 

*z,m 

52. 

co 

radius of cylindrical waveguide 

multiple of A/2 

temperature, OK 

mode of transverse-electric wave pattern in waveguide 

tI.me 

volume 

group velocity 

energy 

coordinate along waveguide axis 

length of cavity with fixed end disk, sh/2 

penetration depth of wave into conducting mass 

dielectric constant of free space 

efficiency 

angle defining position of radius vector of waveguide 
cross section 

Debye shielding parameter 

wavelength 

weber magnetic permeability, NIX x 10e7, - amp-m 

collision frequency 

conductivity, mhos/m 

root of Bessel function 

resistance 

circular frequency, 2fif, radians/see 
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Subscripts: 

co cutoff 

e electron 

g conditions inside of waveguide 

1 number of half-period variations of radial electric field 

m number of half-period variations of angular electric-field 
component with respect to radius of waveguide 

max maximum 

0 cavity with fixed end disk 

P plasma 

Dots over a symbol indicate differentiation with respect to time. 

ANALYSIS 

Comparison of Forces Due to Wave Trains With and 

Without Amplification by Resonance 

The energy density or the radiation pressure of an electromagnetic 
wave train traveling along a tube of constant cross-sectional area A 
is given by the power transmitted P divided by A times the velocity 
of propagation. Thus, 

dW P -=- 
dV Aj, (1) 

where 

dV=Adx 

and 

dW = P dt 
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The force which the wave train exerts on a disk of conducting material 
of cross-sectional area A then will be 

In the case of a constant velocity of wave propagation, equation (2) 
simplifies to 

T 

(3) 

In the case of unrestricted propagation in the direction of the axis of 
the waveguide, the energy Pt is distributed over a volume which is A 
times the distance traveled by the wave during the time t. Thus, the 
force due to absorption of a single wave train is 

F Pt P 
=Ct=C (&a) 

For a reflected wave the force would be doubled; that is, 

F=F (4b) 

If it is assumed that the power transmitted P is 108 watts, the 
forces due to absorption and reflection of a single wave train are, 
respectively, 

F abs = 2~ newton 
3 

and 

2 Frefl = 7 newton 

J! 
E 
/ 
1 

It is evident that if the wave train is transmitted into a finite 
volume, where ,it gets a chance to be reflected back and forth, a resonant 
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intensification of the amplitudes of the electromagnetic waves can take 
place, and with it there is intensification of radiation pressure. (See 
fig. 1.) In the case of intensification by resonance, the energy Pt 
is distributed over a restricted volume Axe, where x0 is the cavity 
length and A is the cross-sectional area of the cavity. 
force from equation (3) becomes 

Thus, the 

F=WcPt 
x0 x, (4c) 

It should be briefly pointed out that equation (4~) can be obtained by 
considering waves that are many times reflected and which in detail 
produce the resonant intensification of the force. For a single reflec- 
tion the force is doubled in accordance with equation (kb). Now, in the 
energetic approach (eq. (4a)) the force is obtained from the energy in 
the complete cavity. In order to find agreement with this approach, 
note that a wave train has to travel through twice the length x. of 
the cavity for the whole cavity to realize the doubling of the force. 
The doubled force thus has to be divided by 2x0, which results in the 
simple expression given by equation (4~). For orientation, a numerical 
example is given. If it is assumed that the cavity length is 1 meter 
and the duration of the microwave pulse is lo-3 seconds, then 

F = 103 newtons 

and the stored energy is 

W = 1,000 joules 

With longer pulses which sre probably attainable by phasing of a sequence 
of pulses (as used in microwave-particle accelerators), even higher values 
of W can be obtained through addition of energy. These high values 
reveal the possibilities of energy storage. However, limitations by 
energy losses due to the reflections of the wave train at the boundaries 
of the cavity must be expected. 

In regard to the power of 108 watts, high-power microwave generators 
of 17 megawatts were available in 1954 (ref. 7). With such generators, 
powers of the order of 100 megawatts can be attained by permitting sev- 
eral generators to be coupled to a cavity. According to the latest infor- 
mation, powers of 100 megawatts are becoming a practical possibility. 



Broad Outline of Intensification Including 

Losses in Cavity Walls 

The rate of energy storage in a cavity is expressed as the differ- 
ence between power input and power loss. Thus, 

dw - p 
dt- - Ploss (5) 

where P is the power transmitted in the longitudinal direction of the 
cavity. The ratio of stored energy to the energy dissipated is given 
by the quality factor Q in waveguide theory. Thus, 

QqL 
Ploss 

(6) 

where (0 = 2rtf is the circular frequency. The quality factor Q 
depends on the frequency, geometry, and material of the cavity as dis- 
cussed in a subsequent section. Substitution of equation (6) into 
equation (5) gives 

dW -2 dt 
W-P& = Q 

% 

W-P%=Ae-CUg ( I) Qt 
% 

Since W = 0 when t = 0, 

(7) 
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and 

W =p A& _ e-((dQJt) 

Thus, the maximum energy which can be stored in a cavity for t +co is 

This maximum value for the energy evidently could have been obtained 
directly from equation (5) by setting dW/dt = 0. Substitution of the 
resulting equality of P and Ploss into equation (6), which defines 
Q, yields equation (8b). 

Equations (8a) and (8b) show that although the maximum storable 
energy will increase with Q, the pulse required to attain these high 
energies would have to increase, since Q appears also in the expres- 
sion e -(o@;/'lt. On the other hand, when high frequencies are used, 
the maximum stored energy will be obtained faster; however, this value 
will be comparatively reduced since the frequency appears also in the 
denominator of the expression for Wmsx. Note also that for most prac- 
tical situations encountered in the waveguide acceJ!erator, wg/Q will 
be considerably larger than unity; thus, even for short pulses the 

expression e - (wg/ QP will be sufficiently large, and as a result the 
deviation from Wmax will be small. This situation is also conveniently 
expressed in terms of efficiency 7 of energy storage as follows: 

_ e-(%/ ‘jt 
11= 

Stored energy 
Total energy input Pt (9) 

Waveguide Theory Leading Up to Numerical Values of Q 

The guiding of waves in a waveguide is obtained by reflection of 
the waves in the waveguide from the sidewalls of the waveguide (fig. 2). 
because of the zig-zag progress of the traveling wave, the rate of prog- 
ress of the pulse along the axis of the waveguide must be slower 
than that of the input wave traveling at light velocity c. This slower 
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rate of progress of the energy in the longitudinal direction is the 
so-called group velocity vg (see, for example, pp. 193-227 of ref. 8) 
which is expressed as 

Q-G=h - 
C 

a+-f$~qiq (A =g) (10) 

and 

rg _ vg A _ 2 -- --- 
f Age c2 

where vgIc is designated as the guide constant G. The subscript co 
refers to the cutoff wavelength; the quantities with subscript g refer 
to the wavelength of the transmission along the guide axis; the simple 
expression for A,, in figure 2 is for the schematic two-dimensional 
case. The cutoff wavelength A,, signifies that for an input wavelength 

(A > ho), th e input waves move normally to the walls of the guide and 
can no longer be transmitted. It should be noted that the power trans- 
mitted along the guide axis Pg is equal to PG; however, since the 
value of G is not far from 1 for the high frequencies involved, 
pg = P; for purposes of analysis, the transmission is assumed to be 
approximately one dimensional. 

The intersection of reflected waves can produce a great variety of 
wave patterns or modes to be propagated along the waveguide. Among the 
various possible modes the TQ,m modes in cylindrical tubes are chosen 
because they have the important property that the electric-field lines 
are concentric circles. The charged particles making up the plasma are 
thus not thrown against the wall, a result which avoids cooling of the 
plasma and contamination with the wall material. The TQ,m mode has 
also the unusual property that the losses in the sidewall of the wave- 
guide decrease with increasing frequency. (In ref. 9 the TQ,, mode 
is the same as the J$J~ mode.) This csn be shown to be related to the 
fact that no electric-field lines terminate at the walls. 

The meaning of the subscript m can be best understood from a 
study of the two wave patterns in figure 34 of reference 10 where the 
Tq 1 and 9 TEO 2 modes sre shown. 7 In defining Tq,m, the subscript 0 
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refers to the number 2 of full-period variations of Er (radial elec- 
tric field) with respect to 8, and the subscript m refers to the num- 
ber of half-period variations of E0 with respect to radius r. Fig- 
ure 34 of reference 10 is repeated here for convenience in the form of 
figures 3 and 4. The choice of the subscript m for the TEG m mode 
is indicated by the ratio of the cutoff wavelength h,, to th:! radius 
of the cylindrical tube. As shown in table 1 on page 639 of reference 10, 
for m = 1 and m = 2, A,, = 1.64r and 0.8gr, respectively. 

The choice of the radius r of the tube is also influenced by the 
fact that the mass of the plasma to be accelerated should not be too 
large. By using a radius of 6 centimeters, AC0 = 9.84 centimeters 
for m = 1 and AC0 = 5.34 centimeters for m = 2. Since the produc- 
tion of very high powers becomes difficult for extremely small wave- 
lengths, a cutoff wavelength of hco = 5.34 centimeters would seem 
rather small for practical' purposes, since the input wavelength has to 
be smaller than the cutoff wavelength h,,. The possibility of using 

TEO,2 Or TE0,3 modes should, however, be kept in mind for the cases 
where a more even distribution of the magnetic field and the corre- 
sponding magnetic pressure is desired. (See figs. 3 and 4.) 

The wavelength in the guide is given from equation (10) by 

The guide constant G is given for the TEO,l mode; for example, in 
reference 8, page 217, 

hgz+ 3.16 centimeters 

(11) 

For the present exploratory calculations an input frequency f 
of 1o1O cycles/set is chosen. This is only a sample value which is 
more or less adjusted to a particular waveguide cross section. The 
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corresponding input wavelength h = c/f = 3 centimeters is a little 
small for achievement of the extreme power outputs of the prder of 
100 megawatts. However, for a somewhat larger waveguide cross section, 
wavelengths of the order of 10 centimeters would be usable, for which 
extreme powers are rapidly becoming available. In this connection, it 
should be noted that the TEO m mode has its largest fixed strengths 
in a ring-shaped region away irom the wall. (It is sometimes called 
the doughnut mode.) It becomes possible to save plasma weight by 
exerting pressure on plasma rings instead of filling out a large part 
of the cross section of the waveguide. The radiation pressure on the 
ring would, of course, no longer correspond exactly to the average 
energy density of the radiation based on quasi-one-dimensional consid- 
erations. Rather, a detailed consideration of the field configuration 
would be required. In this connection, it should be pointed out that 
the equivalence of magnetic pressure to energy density is only strictly 
true provided the magnetic lines of force are straight and parallel. 
(For example, see p. 24 of ref. 11.) 

The Quality Factor Q and Its Variation With Plasma Properties 

Formal development.- The dependence of Q on the geometry of the 
cavity, conductivity of the cavity walls, and input wavelength is given 
on page 300 of reference 12 for any TEz,~,~ mode as 

Q s 

A= (12) 

where, in reference 12, 

with 6 being the depth of penetration of the current due to the skin 

effect for metals referred to the input wavelength. A, p = y, and 

R = g. The quantities XZ,~ refer to the roots of Bessel functions 

(ref. 12, p. 299). For the Tk,m,s modes used here, 2 is zero. 
The subscript s, which has been added since the waveguide is closed 
off to become a cavity, refers to the number of half-period variations 
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in the direction of the waveguide axis. In other words, the length of 
the cavity is given in multiples s of htz/2* 

The effect on Q of the variation in cavity length at constant 
waveguide radius is now discussed. By using the fact that the length 
of the resonant cavity has to be a multiple of the wavelength in the 

cavity x0 = 5 hg, Q becomes for the T%,m,s modes 

lim Q 
s +m 

= 
62fl%,m2 

(13) 

Equation (13) indicates that for a constant guide radius r and a given 
wavelength h, Q increases with increasing length x0, that is, with 
multiples s of the wavelength The smallest Q is obtained for 

1 
the minimum length x0 = 2, or s = 1. When s approaches ~0, Q 

approaches a limiting value. 

The introduction of higher multiples s of the wavelength %I2 
indicates the introduction of higher modes for the Tq,m,s pattern. 
The introduction of such higher modes is known to increase the quality 
factor Q. The reason is, in essence, that for each wavelength the 
number of boundaries, where the losses occur, is reduced. An increase 
in Q can be also obtained by increasing the cross section of the wave- 
guide, a condition which offers the possibility of introducing higher 
modes in the direction of the waveguide radius. Even if no higher mode 
is introduced, the enlarging of the cross section would increase Q by 
virtue of the fact that the larger cross section removes the guide fre- 
quency further from cutoff frequency. A way of.reducing the losses at 
the ends of the cavity is to reduce the frequency. Since, in this msn- 
ner, the cutoff frequency is approached, the losses in the sidewalls 
will increase, unless the cross section of the waveguide is made propor- 
tionately bigger. The optimum choice of frequency will, thus, be based 
on a compromise. It should be reemphasized that for the T%,z,~ mode 
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the maximum intensity of the electric field occurs in a ring-shaped 
region, with the result that the plasma has to be only of ring shape 
and as a consequence is at reduced weight. This is especially important 
when the larger waveguide cross sections are considered which offer the 
possibility of increased efficiency. 

Interaction of electromagnetic radiation with a plasma and the 
effect on Q.- Equation (13) indicates that the quality factor Q is 
inversely proportional to 6, the depth of penetration or skin depth of 
the electromagnetic radiation into the cavity wall. For purposes of 
orientation, 6 is first expressed by the approximate formula used for 
metals for microwave frequencies, without discussing its exactness for 
plasmas, that is, 

Since Q is also about proportionalto A or inversely porportional 
to CO, it follows that approximately 

This is not surprising if it is remembered that Q is inversely por- 
portional to losses and that the resistance n is of the dimension 

It is thus indicated that in order to have a high value of Q, the 
electric conductivity should be made high and the frequency low. How- 
ever, the severity of this effect is somewhat diminished because w 
and c appear under the square-root sign. 

The use of high frequency has, however, certain important advan- 
tages in promoting efficient interaction of the electromagnetic radia- 
tion with the plasma, the interaction which indirectly has also a bene- 
ficial influence on the quality factor Q. As previously discussed, 
the use of high frequencies is desirable for keeping the waveguide to 
reasonable size; but, of course, this in itself is not sufficient jus- 
tification for the waveguide method. 

4” 
51 
1 

The advantages are conveniently expressed in terms of the magnetic 
Reynolds number @ which gives the efficiency of interaction between 
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a magnetic field and a plasma. Limitations to this approach are subse- 
quently discussed. The nondimensional parameter RM may be expressed 
in the various forms 

RM = pc-vL 

RM = paL2u, 

L2 RM = - 
l/W 

L2 RM = g2 

where L denotes length and v denotes velocity. It is indicated that 
in order to improve the interaction of plasma and the magnetic field 
for a given value of (5 and u, it is desirable to use short inter- 
action times or high frequencies. The large magnetic Reynolds number 
thus attained can also be interpreted to mean that the magnetic field 
cannot penetrate deeply into the plasma or that the skin depth 6 is 
small. This is important in any method of plasma acceleration because 
it permits the use of thin and thus small weight plasmas. 

From the previous discussion, the high frequency (within certain 
limits subsequently discussed) is thus seen to be a necessary condition 
for efficient interaction, but it is not sufficient for creating high 
values of Q which are approached as follows: An increase in frequency 
u) decreases the penetration depth 6 in the plasma and with it increases 
the resistance Cl and the heating. Because of the heating, the con- 
ductivity CJ is increased which in turn increases the quality factor Q. 
The frequency will have to be judiciously chosen so that it optimizes 
these conditions together with the waveguide requirements. It must be 
also taken into consideration that the power output of transmitters is 
reduced with increase in frequency or the corresponding reduction in 
wavelength. 

So far, the plasma has been treated like a metal. It must be 
emphasized, however, that at the high frequencies under consideration 
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the plasma does not always act like a metal but may behave like a die- 
lectric or a combination of both. It will be shown that this behavior 
of the plasma can have certain beneficial effects on the quality fac- 
tor Q. The various cases of dielectric or metal characteristics can 
be expressed with comparative simplicity for an electromagnetic wave 
impinging perpendicularly on the plasma. The variation of the plasma 
properties with frequency is most conveniently expressed in terms of 
the complex dielectric constant or its square root, the index of 
refraction. 

A wave propagating in a medium with the index of refraction n 
and the absorption coefficient k has the complex index of refraction 
( see, for example, eq. (3.2) on p. 112 in ref. 13) which is expressed 
as 

n-ik=/x (14) 

where v is the collision frequency. The sum terms in reference 13 are 
neglected here since they refer to bound electrons which are not con- 
sidered for the plasma case. 

The frequency c+ is the so-called plasma frequency and is given 
by 

2~ x 8.97 x 103/& 

where Ne represents the number of electrons per cubic centimeter. 

Now, it is known (ref. 13) that, for a metal, n and k both 
approach 

(15) 

The depth or distance of decay in amplitude to l/e (where e is the 
base of the natural logarithm) is 

where 6 is the well-known skin depth previously used. 
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It can be readily shown that the plasma acts like a metal under the 
somewhat contradictory conditions 

O-8) 
OV vw2 <l -=-- 
%2 wLop2 

If the expression for % in equation (15) is squared, and if the 
direct-current conductivity (J is given by 

Neq2 (J=- 
QV 

(19) 

the result is 

WV EO” -=- 

‘op2 u 

Substitution of this relation into equation (14) and using the inequalities 
in equation (18) reduce equation (14) to 

i) (20) 

which agrees with the conditions for n and k stated in equation (16) 
as applied to a metal. 

For a given electron concentration Ne or plasma frequency u+, 
the plasma will thus act as a metal provided its direct-current conduc- 
tivity (eq. (19)) is 1 ow with the added condition that the input fre- 
quency lies sufficiently far below the plasma frequency. The reason for 
a metal behaving as it does is that its electron concentration and, thus, 
its plasma frequency are extremely high. 
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On the other hand, if the collision frequency v is small com- 
pared with (o in equation (18) and if the direct-current conductivity 
is large, the plasma acts like a dielectric with the complex index of 
refraction 

(21) 

For cu> wp, a real index of refraction exists: 

‘L)p2 n= I-- 
i-- u? 

When CD < 9, however, k which was actually set up as a decay or 
absorption parameter becomes real: 

The distance required for the amplitude to decay to l/e is 

6=1=C 1 (22) 

The finite penetration of the wave is here not due to heat losses 
brought about by collisions but represents the exponential "tail" due 
to total reflection from the now dielectric plasma. (See ref. 11.) 
If the frequency is smaller than the plasma frequency, finite penetra- 
tion depth results evidently from purely dielectric processes. 

In the limiting case where the input frequency o) is negligible 
compared with "p (the plasma frequency), equation (22) degenerates to 
the form 
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Since the frequency o is now negligible, this penetration depth must 
be the result of a pure direct-current phenomenon, where the effects of 
collisions have become negligible and, thus, the direct-current conduc- 
tivity is infinite. The finite penetration of the wave can, however, no 
longer be explained in steady-state terms. An interesting independent 
derivation'of this limiting case of zero frequency is given in refer- 
ence 14 and is based on time-dependent considerations which are, however, 
not of the periodic nature used here. It should be recalled here that 
the customary derivation of the direct-current conductivity which is, in 
contrast, based on the attainment of a terminal constant electron velocity 
is produced by friction due to collisions. 

The interaction of the wave with the plasma so far has been based 
on the assumption that the electric fields are weak. As is known from 
the study of runaway electrons for strong fields (for example, see 
ref. 15), the customary concept of direct-current conductivity (based 
on reaching terminal constant electron velocities due to collisional 
"friction") may no longer be a good approximation and time-dependent 
concepts have to be introduced. This thought has, in essence, already 
been expressed in explaining the limiting case of infinite direct-current 
conductivity. The theory of runaway electrons merely indicates that for 
strong fields the time-dependent effects become important even before 
this limiting case is reached. This is also true of problems treated 
here where comparatively high frequencies are involved, although this 
behavior is not due to the use of strong fields. Thus, it appears that 
for high powers and strong oscillating fields, the time-dependent effects 
will have even greater importance. The runaway of the electrons will, 
of course, be impeded because of oscillation of the fields. 

It should be pointed out that in order for the plasma to act like 
a dielectric, its boundary has to be comparatively sharp. (The distance 
over which the changes in dielectric constant occurs must be considerably 
smaller than the wavelength.) Since the plasma is pushed by the radia- 
tion pressure, it should not be difficult to maintain such a sharp 
boundary. The stability of the plasma configuration would also seem 
good since the high-frequency oscillations offer a possibility of dynamic 
stabilization. The radiation pressure is essentially transmitted to the 
lighter electrons. They, in turn, transmit it to the ions by collisions 
or, for low-collision frequencies, by space-charge effects. 

For a more detailed evaluation, the possibility of growing coherent 
plasma oscillations with Landau damping (ref. 11) and nonlinear properties 
would also have to be considered, including possible deformations of the 
plasma and the production of higher harmonics; since the problem of inter- 
action of high-power radiation with a plasma is rather new, further theo- 
retical and experimental studies are necessary to check the aforementioned 
relations. 
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Since the quality factor Q is inversely proportional to the losses, 
a brief discussion of them is now given. The power-loss coefficient (for 
the plasma thickness larger than 6 when the power transmission through 
the rear boundary is negligible) is expressed as (p. 125 in ref. 13) 

1 - Crefl = 1 - (1 - n)2 + k2 

(1 + n)2 + k2 
(23) 

where Crefl is the coefficient of reflected power. The unity in 1 + n 
refers to the index of refraction of the region outside of the plasma. 

From the severe conditions of inequalities in equation (18) required 
of the plasma to act like a metal, it is to be expected that for the 
increasingly high direct-currect conductivities expected because of the 
high-frequency plasma heating, the plasma will tend to act increasingly 
more like a dielectric with total reflection of the impinging radiation. 
As a consequence, the losses for the plasma should become smaller than 
those of the metal with the same direct-current conductivity, and as 
a result the quality factor Q should become higher. Calculations 
for various direct-current conductivities and waveguide frequencies agree 
with these effects. The losses were also calculated by an approximate 
relation given in equation (2) of reference 4 for the power input per 
unit area due to ohmic heating 

p= 1 B2 -- 
(J@ 2P 

(24) 

by using for 6 the penetration depth 1 
Flk 

of combined metallic and 

dielectric origin; the expression B2/2p is the energy density due to 
radiation at the plasma surface. A good check on the order of magnitude 
of the more involved losses from equation (23) was obtained. Equa- 
tion (24) brings out the fact that the loss reduction in the plasma com- 
psred with that of the metal corresponds to a larger penetration depth 
as the dielectric total reflection is approached with increasingly larger 
direct-current conductivity. It should be emphasized, however, that even 
for the comparatively high frequencies of (L, = 2~( x lOlo radians/set 
chosen in this paper, the penetration depth for total dielectric reflec- 
tion in equation (22) would still be small. If, for example, an electron 
concentration of N, = 1014 per cubic centimeter is chosen, the plasma 
frequency 'l)p in equation (15) would be 
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r+ = 2n x 8.97 x 103F, = 27~ x 8.97 x 10~' = 5.63 x lo= 

The resulting ratio is 

a2 -= (2n x 101q2 

%2 ( 2~ x 8.97 x lolo > 
2=&-E 

and 6 becomes 

= 0.54 millimeter 
5.63 

This value of 6 is still very small as a lower limit for practical 
plasma thicknesses. The metallic penetration depth given in equa- 
tion (17) would, of course, be much smaller. For example, for silver 
with CJ = 6.13 x 107 mhos/m and (LI = 2n x lOlo radians/set, the pene- 
tration depth is 

6.4 x lo-7 meter = 6.4 x 10m4 millimeter 

These approximate considerations indicate that a treatment of the 
quality factor Q of the plasma on the assumption that the plasma acts 
as a metal should yield conservative values, whereby the extremely small 
penetration depth existing for interaction of waves with metals can no 
longer be maintained. This condition seems, however, of no serious 
practical consequence in the choice of plasma dimensions, since the 
penetration depth for the plasma is still small. 

It should be noted also that the plasma acts as only one wall of 
the cavity (fig. 1) and that, thus, the value of Q of the complete 
cavity will be due to a combination of wave interactions with metal and 
plasma regions. For a plasma of lower than metallic reflection, the 
value of Q based on the plasma alone would thus seem a conservative 
one. If the interesting possibility were to arise that the plasma Q 
is higher than that of the metal, naturally the metallic Q would have 
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to be taken. Of course, further theoretical and experimental studies 
of the nonlinear interaction effects are necessary before passing 
final judgment. Since the plasma proves to be a very good reflector 
at high temperatures, special designs of plasma accelerators have also 
been considered where both end walls of the cavity are made of plasmas 
with arrangements enabling alternate replacement of the plasmas after 
acceleration. In this manner, the power generally lost due to skin 
effect could be put to use. 

It would seem perhaps worthwhile to point out that for a quality 
factor Q that does not have excessively large values (that is, .the 
system is not too sharply tuned), its value wili not be too sensitive 
to changes in configuration. Also, as previously stated, the time 
required to reach maximum-energy storage in the cavity will be shorter 
and with it the pulse required will be shorter. A nonexcessively high 
value of Q may, thus, offer fewer disadvantages than those expected 
on first sight. 

The effect of coupling from the transmitter into the cavity must, 
of course, also be considered. With modern means of coupling, the 
losses should not be too large, especially if Q is not excessively 
high. The problem of breakdown at the windows of the cavity for 
extreme-power microwaves would have to be given thorough experimental 
attention. 

Calculation of Q.- Since only few studies of the interaction of 
high-power radiation with plasmas have been performed, only approximate 
values of Q can be given here. Since it was shown in the previous 
section that the use of metallic or direct-current values for the plasma 
Q should give conservative estimates, it was decided to use such values 
for the sake of simplicity. The values of Q to be calculated are based 
on two representative plasma direct-current conductivities, whereby for 
each conductivity the variation of Q with changes in cavity length is 
taken into account. 

The representative values for the direct-current plasma conduct- 
ivities are now given. Assume a hydrogen plasma that has been preheated, 
say, by radiation itself or by some induction process which can put heat 
in a ring region, to a temperature of 10,OOO" K to 12,OOOo K where expres- 
sions for full ionization become applicable. The direct-current conduc- 
tivity is then obtained from the distance-encounter expression (eq. (5-37) 
in ref. 11) as 

E 
5 
1 

CT = 1.53 x 10 -2 T3'2 mhos/m 
loge n 
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Assume that the ionized plasma contains approximately 1014 particles; 
these particles sre equally divided into ions and electrons. Now, for 
an electron density of approximately $ x 1014, the value of log, A 
according to table 5.1 (p.73) in reference 11 should be about 7. A 
conductivity is thus obtained which is larger than lo3 mhos/m; how- 
ever, 103 is taken as one representative value. Another value for 
the conductivity chosen is the high value for pure silver where 
u = 6.13 x 107 m.hos/m. 

The values of Q for u = 103 mhos/m together with the previously 
chosen and calculated values for frequency and cavity radius are obtained 
by substitution of 0 into e+ation (12) and are given in table I(a). 
The cavity length is expressed in terms of multiples s of h/2, where 
%3 is the wavelength inside the guide which has been previously deter- 
mined and is 3.16 centimeters. It is of interest to note that Q v-aries 
from the smallest value of 55.74 at s = 1 to its largest value of 
4.29 x 103 as s +Q). However, even at finite large values of s, Q 
is of the order of 103. The values for Q are conservative since only 
one wall of the metallic cavity has the comparatively low plasma conduc- 
tivity of u = 103 mhos/m. Similar calculations using the much higher 
direct-current conductivity of silver, u = 6.13 x 10 7 
in the values of Q given in table I(b). 

mhos/m, result 

A brief investigation of the effect of superconductivity on the 
metal walls was also made. Since, as is well known, the superconducting 
state tends to break down for certain magnetic-field strengths (related 
to the currents), the superconductivity should most likely find its 
greatest use in the sidewalls of the waveguide. The reason is that for 
the %,m modes used here the currents and the associated losses in 
the sidewalls sre comparatively small. The effect of high-frequency 
currents on superconduction would have to be studied in more detail. 

In'order to determine the value of Q for the sidewalls that are 
superconducting (the losses due to them are zero), the power losses 
Ploss in equation (6) and indirectly contained in equation (12) for Q 
would have to be split into those due to sidewalls and those due to 
the end disks. Thus, 

Q= uw 
'loss,side + Ploss,end 

(25) 
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In these exploratory considerations an exact derivation of the split 
for the general value of Q in equation (12) is avoided. The approach 
adopted is rather to use Q for s = 1 as the starting point for the 
superconducting sidewalls. The reason is that for s = 1 the length 
of the cavity is A,/2 or only 1.58 centimeters (see eq. (11)); the 
radius, on the other hand, which is the same for all values of s, has 
the value of 6 centimeters. It stands to reason that in this case with 
s = 1 the losses will be predominantly due to the end disks. As a 
consequence, the value of Q for s = 1 will give a conservative 
estimate of the value of Q for s = 1 with superconducting sidewalls. 
When the losses in the sidewalls can be neglected, the denominator of 
equation (25) remains constant since the losses in the end disks remain 5 
the same for a given frequency. On the other hand, the stored energy 1 
in the numerator of equation (25) is proportional to the volume of the 
cavity, and for a given cavity radius the numerator is proportionalto 
the length of the cavity. Since the value of Q for the superconducting 
sidewalls Qsuper ( > was chosen to be equivalent to the value of Q for 
the ordinary sidewalls with s = 1, the proportionality to the cavity 
length enters through multiplication of (Qsuper) = by s. The vari- 

ation of Qsuper with s 'is given for 6' = lo3 Z&L/m in table I(a) 

and for u = 6.13 x 107 mhos/m in table I(b). Since the identification 
of Qsuper for s = 1 with the ordinary case for s = 1 is somewhat 
conservative, Q super for s = 1 was rounded off to a slightly higher 

value. Specifically, Q for u = 6.13 x 107 mhos/m was rounded off 
to 1.4 x 104 for Qsuper, and the value of Qsuper for u = lo3 mhos/m 
was correspondingly obtained by multiplying Qsuper by the square root 
of the ratio of the two conductivities. 

The Force on the End Disks of the Cavity 

Since the force on the end disks of the cavity is W/x,, it can 
be written with the use of equations (8) as 

With x0 = s $, wg = 2Jtfg, and hg = -&, the maximum force is 

F P Q - PQ msx=-- xo % Jrfhgs (27) 



For P = 108 watts, f = 1010 cycles/set, and hg = 3.16 x 10 -2 
equation (27) can be reduced to 

meter, 

F 
-=&A (28) 

In spite of the simple expression for F,, for computational purpo6es, 
it is of interest to give a general analytical expression for Fmax. For 
losses that occur in the sidewalls, Q is of the form 

Q= A’ 

B' + $' 
(29) 

where A', B', and C' are constants. The maximum force F,,, is of 
the form 

F Al' 
msx = B's -f C' (30) 

In other words, Fmax decreases with cavity length (the dimension of 
the force is energy over length) in contrast with Q which shows an 
increase. 

On the other hand, when the sidewalls are superconducting, Q is 
proportionalto the cavity length or s, the multiple of h/2; and, thus, 
F max from equation (28) remains constant with varying cavity length. The 
variation of Fmax with s is given for (5 = lo3 mhos/m in figure 5; 
the constant Fmax for superconducting sidewalls is Fmax = 5.69 newtons. 

. . The variation of Fmax with s for u = 6.13 x lo7 mhos/m is given 
in figure 6. The constant Fmax for superconducting sidewalls is 
F max = 1.41 x 103 newtons. 

At this point an important observation seems in order concerning 
the benefit of storing the energy by resonance rather than permitting 
the radiation merely to impinge on the plasma without resonant intensi- 
fication. For the nonresonant case the force on the plasma is l/3 or 
2/3 newton, depending on whether the plasma completely absorbs the 
radiation or reflects it completely. (See eqs. (4b) and (4~) and the 
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following discussion.) Calculations of the reflection coefficient in 
equation (23) from the plasma data indicate that even for u = 103 mhos/m 
the plasma will still offer some reflection; consequently, this force 
should be over l/3 newton. For the resonant case, however, with 
u = 103 mhos/m, the relatively low conductivity, a conservative esti- 
mate results on the average (fig. 5) in a force of at least 10 times 
larger. For the higher conductivity of u = 6.13 x lo7 mhos/m, the 
increase in force is, of course, considerable, being on the average 
1,000 times higher. It must be recognized, however, that the force for 
the nonresonant case remains about constant with changing cavity length 
because the wave train which exerts pressure on the plasma traverses 
the path to the plasma only once; whereas, in the resonant cases the 
repeated reflections cause added losses (except for superconducting 
sidewalls) and thereby lower the force. It will be shown subsequently 
that, for the acceleration of very small masses, the success of the 
waveguide accelerator does not depend on the effect of resonance; but, 
of course, it is greatly benefited by it. 

Equations for Plasma Acceleration 

The energy balance of a resonant cavity with one end disk permitted 
to accelerate in the direction of the guide axis (fig. 1) is 

dW P -= 
dt - Ploss - F 2 (31) 

where Fb/dt > is the rate of work done by the radiation pressure on 
the end disk. By expressing the power loss Ploss again in terms of 
(w/Q)W, where W is the stored energy, equation (31) becomes 

dW 
dt= 

p-%W-Fdx 
Q dt 

By writing W = Fx = (W/x)x, dW/dt can be expressed as 

dw -= 
dt 

FE+xE 

Substituting dW/dt into equation (32) gives 

(32) 

dFP -z-m 
dt x Q (33) 
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For purposes of physical insight, the terms in equation (33) are sepa- 
rately interpreted. Assume that energy is being stored in the cavity 
before the disk is moving (the drag of a stationary magnetic field through 
which the plasma has to move could serve the purpose) and that the energy 
is used to accelerate the plasma without further power input. P and power 
loss Ploss of (ugW/Q. The change in work done at the expense of change 
in stored energy is then -F dx; thus, 

dW = Fdx+xdF=-~dx (34) 

It follows that 

dF -= -2 dx 
F X 

Integration of equation (35) yields 

2 

(35) 

(36) 

This law of adiabatic expansion should be compared with that for the 
adiabatic expansion of black-body radiation (ref. 16) where the exponent 
7 is equal to 413 instead of to the present value of 2. The reason for 
the difference can be seen from the definition of 7, which is the ratio 
of specific heats, in terms of degrees of freedom n': 

An arbitrary wave traveling in space can be composed of plane waves 
traveling in the direction of the Cartesian coordinate axes. Each plane 
wave has two degrees of freedom. For the present case of a wave traveling 
along the axis of the tube, n' = 2 and 

7= 2+2,2 
2 

For arbitrary waves used in the analysis of black-body radiation, 
n' =3x2=6 or 

,_6+e_4 
6 3 

(38) 

(39) 
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For the present preliminary calculations, the acceleration of the 
plasma is evaluated from the simplified adiabatic expansion law (see 
eq. (36)) which is rewritten as 

F = m d2x _ Foxo2 m-- 
dt2 x2 

Pa 

In other words, the term P/x related to the power added during the 
acceleration and the loss term TF in equation (33) are assumed to T 

I! 
be the same. The following estimate suggests that the aforementioned c 
assumption is rather conservative: The estimate is based in essence 3 
on the first step of an iterative procedure using for F the adiabatic 

relation F = F,(x,/x)~ in the evaluation of the term ( I) mg QF, whereby 

the expression for Fmsx = 5 & (es. (27)) is substituted for F,; 
9 

thus, 

, f$F-(l$ pB, xo2-pxo % Q” -- 
Q cog,oxo x2 x x cog,0 Q 

where the subscript o refers to conditions for the initial nonexpanded 
cavity. During the expansion of the radiation, the wavelength Ag has 
to be increased to maintain resonance conditions and with it the resonant 
frequency decreases. The initial frequency is, however, so far from the 
cutoff frequency that the losses should not increase too much. The 
resulting reduction in Q or G/Q > 1 would not seem so large as to 
overcome the effect of x,/x < 1 or ug/'~~,~ < 1 during the expansion. 
The loss term ( 1) u+g Q F should thus remain below the input term P/x 
during the expansion, a condition making the adiabatic expansion con- 

2 
servative. For a complete solution, F = m dx must be substituted 

dt2 
into equation (33), and the result is 

d3x P "g d2x 2-n d2x dx m-=--- e-w- 
dt3 x Q2 X & dt (41) 

Thus, a third-order equation has to be solved. The solution of equa- 
tion (41) is, however, not discussed here. 
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Velocity Attainable by Plasma 

The velocity is obtained by integration of the simplified equa- 
tion (4-O) which gives 

2 
j; =-- FOX0 1 

m x2 

where a dot over a symbol indicates a time derivative. Multiplying G 
by 2? gives 

. 

Integration of equation (42) gives 

jc2 _ Foxo2;+C, _--- m 

(42) 

(43) 

The acceleration starts at a distance x0 (the initial cavity length) 
at zero velocity, j, = 0; thus, energy is assumed to be stored in the 
cavity before the plasma disk is moving. Therefore, 

Cl - 2Foxo 
m 

and 

or 

(44) 

(45) 

(46) 
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For the present approximate calculations, the force F, at the 
cavity end disk is given by the simple expression for Fmsx from equa- 
tion (27) 

where the length in Q corresponds to the initial cavity length xo. 
The result is . 

k 
5 

(47) 1 

Numerical estimates of the velocities i attainable require an 
estimate of the plasma mass m. In agreement with the previous dis- 
cussion, it is assumed that the mass consists of 1014 particles of 
hydrogen where the mass of a hydrogen atom is about 1.6 x 10 -24 
(or twice as high for deuterium). 

gram 
Assume that the plasma disk has a 

cross-sectional area of 100 square centimeters and a thickness of 
1 centimeter. The thickness is about 10 times the penetration depth 
for total dielectric reflection from the plasma. 

-8 
The resulting mass 

of the plasma would be 1.6 x 10 gram or 1.6 x lo-l1 kilogram. Since 
the T% mode has its maximum strength in a ring-shaped region, the 
plasma volume could be differently distributed in the cross section of 
the guide. 

It is further necessary to choose values for x0/x, the ratio of 
initial cavity length x0 to the position x of the plasma during its 
motion. Since frequency changes up to 20 percent are becoming possible 
for existing traveling wave-tube transmitters and since the wavelength 
is about proportionalto x (if about one-dimensional expansion of the 
radiation is assumed), one value of the ratio xo/x tried is 10/12. 
By assuming that several transmitters could be phased, larger frequency 
changes would seem possible; as an example, the velocities are also 
calculated for x d x = l/2 which corresponds to doubling of the wave- 
length during the acceleration. Note that, according to equation (46), 
the velocity x could, however, be also increased by an increase in 
the initial length x0 of the cavity. Since in the present approximate 
approach the frequency %,o enters directly only through the constant 

F 0' %,o is fixed at 2rrfg,, where f, = lOlo cycles/set; the power 
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is 108 watts, as previously used. The velocities attainable for a plasma 
conductivity of u = 103 mhos/m and for x,/x = lo/12 are plotted in 
figure 7 for the cases of ordinary and superconducting sidewalls. The 
velocities for x o/x = l/2 and u = lo3 mhos/m are given in figure 8. 
The values for the velocities are conservative since only one wall of 
the metallic cavity has the comparatively low plasma conductivity of 
u = lo3 mhos/m. Similar calculations for u = 6.13 x 107 mhos/m are 
presented in figures 9 and 10. It should be noted that, according to 
these approximate calculations, p lasma velocities of lo5 m/set would 
not seem too hard to obtain, even for plasma conductivities of lo3 mhos/m. 
For extreme plasma conductivities of 6.13 x lo7 mhos/m, velocities of 
the order of even 107 m/set result (without relativistic corrections). 
In all these calculations it has been assumed that the plasma is accel- 
erated into a vacuum so that its mass will not increase during the 
acceleration. 

It is again of interest to make a comparison tith the nonresonant 
case. In that case an approximately constant force of l/3 or 2/3 newton 
is applied since the wave train makes only one passage (or two with a 
single reflection) and the sidewall losses are negligible (as in the 
case of superconducting sidewalls). 

The differential equation of motion is now 

G = F = Constant (48) 

and can be solved easily without approximations. By assuming that the 
initial velocity jc = 0 and the plasma motion start at x = 0, the 
result for 5 is 

(49) 

For a force F = l/3 newton and a distance x = lm of plasma motion 
using a mass of 1.6 x 10-l-l kilogram, the result is 

. 
x = 2 x 105 m/set 

This result is lower on the average than the velocity attainable for the 
resonant case with u = lo3 mhos/m given in figures 7 and 8. The 
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resonant case for u = 6.13 x 107 mhos/m (figs. 9 and 10) yields much 
higher values. Recall that the force F, for the resonant case was 
more than 10 times larger and the force enters under the square-root 
sign in the velocity. Although a considerable increase in velocity 
could probably be attained (a factor of 5 or larger already counts much 
in the velocity scale) for 'the resonant case with u = lo3 mhos/m, it 
is significant to note that even without resonance considerable veloci- 
ties can be attained. Note that for the nonresonant case no frequency 
variation is required from the receiver since no expansion of the radi- 
ation takes place. It could be thus conceived that the initial large 
push over a comparatively small frequency range could be provided by 
the resonance method but that the push should be continued in a non- 
resonant manner over a greater length. It is conceivable that this 
nonresonant push could be continued over a large distance if a large 
number of high-powered generators are coupled in from the sides of the 
waveguide. In this manner, matching problems which arise in other 
accelerators could be avoided throughout the acceleration. Note that 
the "matching" problem for the initial resonant case with frequency 
variation seems to be solvable with existing feedback methods unless 
the plasma velocities are to approach a large fraction of the speed of 
light, but at these extreme velocities the nonresonant push can take 
over. 

A brief discussion of the feasibility of simulating micrometeorites 
with the present method may also be of interest. For the TEO mode 
which has currents flowing through circles in the waveguide cross sec- 
tion, the micrometeorites could be simulated by accelerating connected 
concentric wire rings. The wires which would have the diameter d of 
the micrometeorite, say d = 4 x 10-3 centimeter, could be broken up 
after acceleration. In this manner the masses to be accelerated could 
be made extremely small, especially if aluminum is used which still has 
very good conductivity but a specific weight of only 2.6 g/cm3. For 
waveguides with a 6-centimeter radius, which were previously discussed, 
the masses would be on the order of 10m6 kilogram. The velocities 
attainable are reduced compared with those of the plasma in the inverse 
ratio of the square root of their masses; that is, multiplication of 
the values of the velocity in figures 9 or 10 indicates that the attain- 
ment of meteorite velocities of approximately 4.0 km/set is within the 
range of possibility. This is especially true if an extra push is pro- 
vided in a nonresonant manner. Several methods for reducing the heating 
of the aluminum ring are being considered. 

I 
II 
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CONCLUDING REMARRS 

With the assumption of a power input of 108 watts into a cavity, 
an input which lies in the range of possibilities because of the recent 
development of modern generators, forces on the order of 1,000 newtons 
seem to be attainable for highly conducting thin plasma disks or rings. 
For such plasmas, velocities up to 10 6 m/see and more are calculated. 
Although the energies that can be stored in the cavity do not'yet quite 
measure up to acceleration systems where the energy is stored in con- 
denser banks, the efficiency of interaction of the radiation with the 
plasma could be better than that of other systems. In that manner it 
could be possible to accelerate plasmas of small masses to higher veloci- 
ties than in other systems. Since the plasma proves to be a very good 
reflector at high temperatures, special designs of plasma accelerators 
have also been considered where both end walls of the cavity are made of 
plasmas with arrangements enabling alternate replacement of the plasmas 
after acceleration. In this manner, the power generally lost due to 
skin effect could be put to use. The acceleration of micrometeorites 
with this method is also found to be within the range of possibilities. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va., June 29, 19.59. 



34 

REFERENCES 

1. Patrick, R. M.: A Description of a Propulsive Device Which Employs 
a Magnetic Field as the Driving Force. Res. Rep. 28 (AFOSR TN 58-684, 
ASTIA AD 162 217), AVCO Res. Lab., May 1958. 

2. Thonemann, P. C., Cowhig, W. T., and Davenport, P. A.: Interaction 
of 'Zravelling Magnetic Fields With Ionized Gases. Nature (Letters 
to the Editors), vol. 169, no. 4288, Jan. 5, 1952, pp. 34-35. 

3. Marshall, John: Acceleration of Plasma into Vacuum. Proc. Second I 
United Nations Int. Conf. on Peaceful Uses of Atomic Energy (Geneva), ! 
vol. 31 - Theoretical and Experimental Aspects of Controlled Nuclear 
Fusion, J-Y%, PP. 341-347. 

4. Butler, J. W., Hatch, A. J., and Ulrich, A. J.: Radio-Frequency 
Thermonuclear Machines. Proc. Second United Nations Int. Conf. on 
Peaceful Uses of Atomic Energy (Geneva), vol. 32 - Controlled 
Fusion Devices, 1958, PP. 324-332. 

5. Clauser, Milton IJ., and Weibel, E. S.: Radiation Pressure Confine- 
ment, the Shock Pinch and Feasibility of Fusion Propulsion. Proc. 
Second United Nations Int. Conf. on Peaceful Uses of Atomic Energy 
(Geneva), vol. 32 - Controlled Fusion Devices, 1958, pp. 161-168: 

6. Vedenov, A. A., and Volkov, T. F., et al.: Thermal Insulation and 
Confinement of Plasma With a High-Frequency Electromagnetic Field. 
Proc. Second Irnited Nations Int. Conf. on Peaceful Uses of Atomic 
Energy (Geneva), vol. 32 - Controlled Fusion Devices, 1958, 
pp. 239-244. 

7. Livingston, M. Stanley: High-Energy Accelerators. Interscience Publ., 
Inc. (New York), 1954, p. 96. 

8. Skilling, Hugh Hildreth: Fundamentals of Electric Waves. Second ed., 
John Wiley & Sons, Inc., 1948. 

9. Sarbacher, Robert I., and Edson, William A.: Hyper and Ultrahigh 
Frequency Engineering. John Wiley & Sons, Inc., 1944, p. 265. 

10. Reintjes, J. Francis, and Coate, Godfrey T.: Principles of Radar. 
Third ed., McGraw-Hill Book Co., Inc., 1952, p. 610. 

11. Spitzer, Lyman, Jr.: Physics of Fully Ionized Gases. Interscience 
Publ., Inc. (New York), 1956. 

12. Montgomery, Carol G., ed.: Technique of Microwave Measurements. 
McGraw-Hill Book Co., Inc., 1947. 



35 

13. Slater, John C., and Frank, Nathaniel H.: Electromagnetism. 
McGraw-Hill Book Co., Inc., 1947. 

14. Pohl, Robert Wichard: ElektrizitZtslehre. Springer-Verlag. (Berlin), 
1955, P. 308. - 

15. Dreicer, II.: Theory of Runaway Electrons. Proc. Second United 
Nations Int. Conf. on Peaceful Uses of Atomic Energy (Geneva), 
vol. 31 - Theoretical and Experimental Aspects of Controlled Nuclear 
Fusion, 1958, PP. 57-64. 

16. Richtmyer, F. K., Kennard, E. H., and Lauritsen, T.: Introduction 
to Modern Physics. Fifth ed., McGraw-Hill Book Co., Inc., 1955, 
p. 115. 



36 

TABLE I 

VALUES OF Q DEPENDING ON LENGTH OF CAVITY 

s; u = 103 mhos/m 

S 

1 

10 

20 

30 

40 

50 

60 

70 

83 

90 

100 

m 

Q 

55.74 

496.79 

888.57 

1.2036 x 103 

1.4661 x lo3 

1.6842 x lo3 

1.8579 x 103 

2.0316 x 103 

2.1689 x lo3 

2.2901 x 103 

2.3991 x 103 

4.287 x 103 

Q super 

56.55 

565.45 

1.1309 x 103 

1.6964 x 103 

2.2618 x lo3 

2.8273 x lo3 

3.3927 x 103 

3.9582 x 103 

4.5236 x lo3 

5.0891 x 103 

5.6545 x lo3 

00 
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TABLE I.- Conckded 

VALUES OF Q DEPENDING ON LEZNGTH OF CAVITY 

(b) x. = $ s; u = 6.13 x 107 mhos/m 

s 

1 

10 

2Q 

30 

40 

50 

60 

70 

80 

90 

100 

1.38 x lo4 1.4 x 104 

1.23 x 105 1.4 x 104 

2.20 x 105 2.8 x lo5 

2.98 x 105 4.2 x 105 

3.63 x 105 5.6 x 105 

4.17 x 105 7.0 x 105 

4.60 x 105 8.4 x 105 

5.03 x 105 9.8 x 105 

5.37 x 105 1.12 x 106 

5.67 x 105 1.26 x 106 

5.94 x 105 L.4 x 106 

Qsuper 
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T- 
High-power generator 

3 Plasma 

Figure l.- Resonance in cavity. 
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Figure 2.- Waveguide relations. 
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Dirretion or 
pmpagation 
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Figure 3.- The T%,l mode as shown in reference 10. 

Figure 4.- The Ts,2 mode as shown in reference 10. 
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Figure 5.- Force depending on length of cavity x0 with u = 103 mhos/m. 
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Figure 6.- Force depending on length of cavity x0 with IJ = 6.13 x 107 mhos/m. 



43 

Length of cavity in multiples of X d 2, 8 

Figure 7.- Velocity jc depending on length of cavity x0 with 
u = 103 mhos/m and x0/x = 5/6. 
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Figure 8.- Velocity jc depending on length of cavity ~0 with 
u = 103 mhos/m and x0/x = l/2. 
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Figure 9.- Velocity 2 depending on length of cavity x0 with 
u = 6.13 x lo7 mhos/m and x0/x = 5/6. 
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Figure lo.- Velocity 2 depending on length of cavity x0 with 
u = 6.13 x lo7 mhos/m and x0/x = l/2. 
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